
Event Notification Patterns for Distributed Machine Control
Systems

Veli-Pekka Eloranta ?

{firstname.lastname}@tut.fi

Department of Software Systems
Tampere University of Technology

Finland

1 Introduction

In this paper we will present three design patterns for distributed machine control system.
By distributed machine control system we mean a system consisting of multiple embedded
controllers which communicate with each other. These actuators control, monitor and assist
the operating of a work machine or an automation process. Typically these kinds of systems
have strict real-time requirements which set certain limitations for their architecture. Other
key drivers of these systems are distribution, fault tolerance, safety and long life cycle.

Control systems have become large and complex systems where the software architecture
plays a central role in the overall quality of the machines. However, there is not so much
literature on the specific aspects of these systems. Therefore, we feel that there is a need for
a pattern language to ease the burden of designing such systems.

Three patterns for this paper are a part of larger body of literature and these were selected
as they are quite thightly coupled and form a whole that is part of even a bigger whole. In
this paper, we will provide patlets of the referenced patterns in the pattern language to help
the reader to understand these three patterns better. Other patterns in the language are not
currently publicly available.

Patterns in this paper are mined during 2008-2011 in an industrial context. Initial drafts of
the patterns were found during architecture evaluations in the Finnish machine industry. Then
the initial versions of the patterns were given to domain experts for review. After they had
reviewed the patterns, we interviewed them to gain more insights to the domain and the
patterns. Finally, the current version of the patterns were written.

2 The context of the patterns

The three patterns presented in this paper are a part of larger body of literature. These patterns
belong to a pattern language for building software architecture of distributed machine control
systems. The whole language consists of 70 patterns and it is illustrated in Fig. 1.
? Copyright retain by authors.



2

The semantics of an arrow pointing from pattern A to pattern B in our language is "pattern
B refines pattern A". This means that if the architect has solved some design problems with
pattern A, the design context is now compatible with the required context of pattern B. The
designer might look at all refining patterns if there are still some unsolved problems in the
context.

The root pattern of the language is CONTROL SYSTEM which describes why to have con-
trol system in the work machine. Patterns presented in this paper refine CONTROL SYSTEM
pattern by providing means to handle events occurring in the system. However, in a typi-
cal situation ISOLATE FUNCTIONALITIES is also applied and then notifications are provided
over bus.

Fig. 1. Pattern language for machine control systems.

Other patterns are referenced in this paper using SMALL CAPS. Patlets of the patterns that
are referenced in this paper are presented in Table 1.



3

Table 1. Patlets of the patterns that are referenced but not presented in this paper

Pattern Name Description
COMMON LOOK’N’FEEL How to improve learnability and effectiveness of the user interface? Make all user in-

terface screens and notifications to have unified layout and colouring. Each UI element
is presented in the same way and place independent of the view.

CONTROL SYSTEM How to implement a work machine that offers interoperability between systems and
is highly operable with good performance? Implement control system software that
controls the machine and can communicate with other machines and systems.

CONTROL SYSTEM VARI-
ANCE

How to build a product consisting of specific software components from a product plat-
form component library? Create a unified way to describe system configurations in a
configuration file. This file is used to select the required software components and their
configuration parameters for the desired system setup.

GLOBAL TIME How to prevent different nodes on the system from getting out of sync? Use external
clock, e.g GPS or atom clock, to synchronize all the nodes.

ISOLATE FUNCTIONALITIES What is a reasonable way to create an embedded control system for a large machine?
Distribute the system into subsystems according to their functionalities. Interconnect
these subsystems with the bus. Use multiple interconnections between subsystems if
necessary.

MESSAGE QUEUE How do you give time for both ends of a message channel to process all messages?
Add a queue for receiving and sending messages to each node. Implement a mechanism
to put messages in the queue and that will send messages from the queue. The same
mechanism can read messages from the bus and add them to the received messages
queue.

OPERATING MODES In order to make sure that only the functionalities which are required can be used in cur-
rent operating context, design system so, that it consists of multiple functional modes.
These modes correspond to certain operating contexts. The mode only allows usage of
those operations that are sensible for its operating context.

PRIORITIZED MESSAGES How to ensure that important messages get handled before other less important mes-
sages? The message types are prioritized according to their urgency and separate MES-
SAGE QUEUEs are implemented for each priority.

SAFE STATE How to minimize the possibility that operator, machine or surroundings are harmed
when some part of the machine malfunctions? Design a safe state that can be entered in
case of a malfunction in order to prevent the harm that machine can cause. The safe state
is device and functionality dependent and it is not necessarily the same as unpowered
state.

STEADY STATE How to handle transient faults that might be generated during the system start-up? De-
fine a time interval in which the system must reach Steady State. Being in Steady State
means that the system is ready for normal operations. Before the Steady State is reached,
the system can generate errorneous alarms that can be neglected.

VARIABLE MANAGER How can you efficiently share system wide information in the distributed embedded
system? For each node, add a component, which contains all the information that is
relevant to operation of the corresponding node. This information is presented as state
variables. The value of a variable is updated every time when a message containing the
information is received.

VECTOR CLOCK FOR MES-
SAGES

How to find out the order of events in distributed system? Give every event a vector
clock timestamp. The timestamp consist of separate message counter values for every
node. The message counter of a node is updated when a message containing vector
clock timestamp with larger value is received.



4

3 Patterns

In this section, three patterns for delivering and logging events in the distributed machine
control system is presented. Patterns are presented in Alexandrian form and they contain also
the known usage of the pattern.



5

3.1 Notifications

.. you have distributed CONTROL SYSTEM and SEPARATE REAL-TIME has been applied to
divide the system into machine control level and operator level. HMI has been used to create
graphical user interface for the system. There are a lot of messages sent through the bus.
However, only subset of the messages are interesting from the operator point of view. You
need a way to inform the machine operator of events or state changes taking place in the
system. For example, events can be faults occurring in the system or state change such as
engaging parking brake. There should be a way to distinguish these event related messages
from other messages transffered in the bus as some of the event messages might need urgent
attention of the machine operator.

How to inform operator or communicate to subsystems that something worth of noticing
has occured in the control system?

Event messages should be easily identifiable amongst the other traffic on the bus. This makes
the testing and debugging of the system easier.

It should be relatively easy to add new events, modify or remove events in the system. Espe-
cially, if CONTROL SYSTEM VARIANCE is used to create a support for accessory devices ,
new events are likely to be added when the accessory devices are taken in use.

Events occurring in the system should be traceable. Therefore, it should be relatively easy
to detect from where the event has originated. Furthermore, it should be possible to find the
cause of the event easily.

Communication of events should be fast in the system. Other traffic on the bus should not
delay the delivery of event information even when the load of the bus is high.

Event information should be human readable. However, transferring a human readable text
on the bus, increases the bus load.

In order to make the system safe and robust and at the same time easy to operate and under-
stand, even handling should be consistent through the system.

Therefore:

Communicate noteworthy or alarming events and state changes in the system using
notifications. Additionally, implement notification service on operator level. This service
is used to create, handle and deliver notifications.



6

? ? ?

All the notifications created on operator level should be triggered using the notification ser-
vice. The notification service is implemented on operator level and it can use VARIABLE
MANAGER to retrieve notifications from the nodes of the system. If VARIABLE MANAGER
is not used, nodes must communicate using notifications messages. Notification service for-
wards notifications to components which have been configured to be interested in certain
notification. Furthermore, notification service can be used to forward notifications to other
machine control level nodes. For example, if node A detects a fault and creates a notifica-
tion. This event is delivered to notification service which then notifies other machine control
level nodes interested in this event. Fig. 3.3 illustrates typical structure of the system with
notification service in place.

Fig. 2. Typical system structure when the notification service is used on operator level.

Using notification service eases decoupling of the application code from the notification pro-
cessing. Notification service should have an interface for propagating notification, receiving
an notification and setting the state of the notifcation. In addition, there should be a system-
wide configuration file, e.g in XML that notification service reads . The configuration file
contains notification IDs for each event and list of nodes which are interested in each noti-
fication. The node itself should take care of the logic when the notification is triggered and
informed to notification service.

User interface should have a mechanism to show notifications on screen. When the notifica-
tion service delivers notification to user interface component, the user interface should show
it to the machine operator. Typically, this is shown as a pop-up window. The machine operator
can then set off this notification by click OK on the pop-up window. This should be informed
back to the notification service, so that the notification service can change the state of the
notification.

Notifications can be delivered as certain kinds of messages that are sent on the bus (if VARI-
ABLE MANAGER is not used). If VARIABLE MANAGER is in use, the same message type can
be used on operator level when notification service delivers events to applications. Notifica-
tions contain information consisting of notification identifier (ID), notification state, notifica-
tion data and optional description text. The message structure is illustrated in Fig. 3.



7

Fig. 3. Typical structure of the notification message.

Each notification has its own notification type identifier (ID). By this ID, the notification can
be identified. For example, ID 501 could mean that oil pressure is low and ID 502 that oil
pressure has reached critical level. Typically this is a number which has some semantics.
For example, the first two (or three) numbers may pin-point the origin of the notification,
i.e. which sensor or actuator caused the nofitication. Notification service can also use this
ID to retrieve the human readable message to be shown with the notification data. Take into
account, that notification messages should be internationalizable. Furthermore, in some cases,
it may make sense to put unique notification ID to the notification message as well. If this
is the case, the unique ID is a running number. For example, first message low oil pressure
notification sent has ID 1, the second ID 2, etc.

As mentioned earlier, notifications have states. Typically these states are "new (active)", "Set
off (active)", "Set off (inactive)", "Normal". This means that when a notification is triggered,
it is new and active. In this case, the notification service delivers the message also to the user
interface of the machine and it is shown to the user. When operator sets alarm off by clicking
OK from the user interface, the state of the alarm is changed to "Set off (active)" or "Set off
(inactive). Difference between these two set off states is that if the cause of the notification is
not removed, i.e. fault is still on, the notification is still active. For example, if oil pressure is
too low and machine operator clicks OK the notification is set off but it is still active as the oil
pressure is still too low. If this is the case, the notification might be given again after a certain
time period has elapsed. Now if operator adds oil, the alarm state is "Set off (inactive)" as
the alarm does not require attention anymore. Probably the alarm state is then during the next
reboot set to "Normal" which is the default value. In addition, notifications may have time
to live, so their state may change over time, even without the operator intervention. When
the notification state is changed, the notification service informs all nodes interested in the
notification, that the state has changed. Furthermore, the source of the notification is also
informed about the state change and it can do necessary actions.

Notification data contains additional information about the event that has happened. The no-
tification sender attachs this to the notification message, so it can be shown to the operator of
the machine, or written in the logs. For example, notification informing that the oil pressure
is too low, could contain current oil pressure value in notification data field of the message.

The description text is not typically included in the message as it would be transferred over
the bus and it would increase the bus load. Therefore, description texts are mapped to noti-
fication IDs in notification service. IDs are then used by the notification service to show the
corresponding description text.

Notifications can also have priorities. If multiple notifications are active simultaneously, they
should be shown in the order of importance to the machine operator. One approach to this
problem is described in NOTIFICATION LEVELS also PRIORITIZED MESSAGES can be used



8

to define priorities between notifications. There are also times when notification occurred can
be ignored, for example during start up as described in STEADY STATE pattern.

? ? ?

Exceptional and noteworthy events or state changes occuring in the system can be informed
system wide in a unified way. It is rather easy to add, modify or remove events using the
configuration file that the notification service reads.

Notifications contain the notification ID which identifies the notification type. It delivers in-
formation to the notification receiver (cause, origin, etc). Human readable description can be
found by using notification ID so the human readable text does not need to be transferred
over the bus. Therefore, notifications causes only minimal amount extraneous bus traffic.

Notification states make it possible to have notifications active, but in the background. This
makes it possible to show the same notification again if the problem has not been removed.
This makes the machine more reliable and easier to operate.

Notification priorities may increase the amount of configuring required. It can make the sys-
tem more complex and harder to maintain.

Notifications in distributed system may cause some additional bus traffic as the number of
sent messages increases. Therefore notifications may somewhat decrease the system perfor-
mance if throughput of the bus is already a problem. However, it might be the case that the
information would have to be transferred anyway.

It requires manual work to configure notifications for each node. Notification IDs also need
to be documented, so it causes some extra work.

? ? ?

In a forest harvester, the harvester head uses notification service to inform the rest of the
system about the exceptional events taking place in the harverster head. Marker colour (that
is used to mark the cut trees) runs out. The marker’s control application generates puts a
fault on in the VARIABLE MANAGER. The notification service notices this and creates a
notification message containing the notification ID that corresponds to the occurred event.
In addition, it adds the marker colour container current filling level to notification data and
sets the notification state to new (active). Then the notification is sent to bus from where the
nodes interested in this information reads it. Operator level PC reads the message and informs
the UI application that marker colour container empty notification has been received. The
user interface application then shows a pop-up on the screen informing the machine operator
about the situation. Operator clicks OK on the pop up and it is closed. The user interface
application calls the interface of the notification service to set the notification state to set off
(active). The operator can continue working but the marker colour can not be used anymore.
Once the marker colour container is filled up again, the node controlling the marker colour
sends a notification message informing that the state of marker colour notification is not Set
off (inactive). This message is again sent using marker colour controller node’s notification



9

service. Once the system is rebooted next time the state of this notification is then reset to
Normal unless the marker colour runs out again.



10

3.2 Notification levels

.. you have distributed CONTROL SYSTEM and NOTIFICATIONS are used to communicate
that something worth of noticing has occurred in the system. However, there are different
kind of events occurring, e.g. operating mode changes, faults, errors and state changes. It
could be useful to have more granularity in notifications as different events have different
consequences. Sometimes you need to inform the operator that a process, the machine op-
erator has started is completed, e.g. once the automation sequence of drill placement has
completed. Furthermore, there might be a need to inform the machine operator about warn-
ings, e.g. oil pressure low. This may not require immediate actions, but should be brought to
machine operator’s attention. In addition, there might be some faults, e.g. a node notices that
a sensor is broken down and needs to inform this fault. The sensor fault may disable some
functionality of the machine as a consequence. In general, different events have consequences
of different severity.

How to group different kinds of notifications according to their severity?

Different kinds of events may have different consequences. It should be easy to distinct be-
tween these different event types and to handle all consequences in a uniform way.

Some events taking place in the system, might freeze all operations whereas some events are
supposed to be taking place. Events that can make the system stop functioning should be han-
dled first. Genereally, events should be processed in the order of severity of the consequences.

Sometimes if an event is not occurring in the system, it might be a sign of a fault or failure. It
should be easy to verity that an event is taking place when it is supposed to.

Operator should be able to easily see what kind of event has occurred. It should be possible to
detect the event type just by taking a glance at the user interface, not reading the description
of the event.

Therefore:

Attach level information to the notifications. Typical notification levels are notices, warn-
ings and faults. Each notification level has its own way to remedy the situation and each
level is presented to machine operator in a certain way.

? ? ?

All notification levels have their own severity and ways to react to the occurred event. Notice
notification level consists of events that are supposed to happen in the system. For example,
when the machine operator starts system self-diagnostics the process will run on its own.



11

Now, when this process has finished a notice level notification should be triggered. This noti-
fication informs the operator that the self-diagnostics process has finished. The user interface
will then show this notice notification to the machine operator. When the operator clicks OK
in the notification dialog, it may propagate a mode change in the system, e.g from diagnostic
mode to normal operating mode (see OPERATING MODES for more details). Warnings are
notifications that tell the machine operator that something needing attention has occurred.
For example, if oil pressure of the motor runs too low, a warning is given. Faults are used
to inform that some part of the system is malfunctioning. For example, if boom position-
ing sensor has broken down, the fault notification is sent by the boom controller. Faults can
make the system to enter SAFE STATE automatically when they occur or if SAFE STATE is
not used, faults may make the machine otherwise inoperable. The structure of notification
message when using notitication levels is depicted in Fig. 4.

Fig. 4. Typical structure of the notification message including notification level.

Basically, the notification levels are added to the notification message as a new field. Some-
times also the first (or some other) digit of the notification ID can be used to express the
notification level, e.g. 1 for notices, 2 for warnings and so on. Notification service can use
this level information to determine the priority of messages. Typically faults are most urgent,
then warnings and last notifications. However, one might also use different granularity for the
notifications, e.g. operating event, notice, warning, fault and in this case the priority may be
different. All notifications have states (as desribed in NOTIFICATIONS), when notifications
are enhanced with levels, all notification states are not utilized. For example, for notices,
states "new (active)" and "normal" are typically enough as there is no need to have other
states. It is just enough that the machine operator is informed about the event, no need to
remind him or her later.

Usage of notification levels is carried out through the notification service. Notification service
is still used to trigger, deliver and receive notifications as it was described in NOTIFICATIONS
pattern. The interface might be slightly changed to support different notication levels, i.e.
adding a parameter to functions or so.

Notifications should also have priorities and by using levels the priority is easy to define. If
multiple notifications are active simultaneously, they should be shown in the order of im-
portance to the machine operator. Within a single notification level, e.g. fault, it might be
necessary to prioritize notifications. If this is the case, in addition to the notification level,
there should be a urgency field added to the notification message. These urgencies can then
be used to determine the priority within a notification level.

Different notification levels should be shown in a distinct way in the user interface. Each
notification level should be made visually different, notices can have a different icon than
warnings and faults and so on. Additionally, the pop up can be one of different color for each
level. Furthermore, the most severe notification types may also trigger a warning sound. This



12

makes it easy for the machine operator to distinct which kind of notification was triggered.
One might want to take a look also at COMMON LOOK-N-FEEL pattern for more advise on
the user interface design.

When using notification levels it might be necessary to use PRIORITIZED MESSAGES pattern
within the notification service to implement the priority order of different notification levels.

? ? ?

Different kinds of events can be distinguished easily using separate notification levels. This
makes, for example, UI application development easier as each level has its own way to be
shown in the UI. Additionally, user can distinguish different notification types just by taking
a glance to the UI.

Notification levels makes it possible to remedy a certain kind of events in their specific way.
For example, when a fault occurs, the machine can always enter SAFE STATE automatically
or stop all operations.

When using notification levels, it is easy to create a priority order of notifications. This is
especially useful if multiple notifications are active simultaneously. However, within a notifi-
cation level, more fine-grained approach might be needed.

Notification levels are relatively easy to add, modify and remove. This makes it easier to
modify the system.

Notification levels requires additional manual configuring of the system. Each level has to
be defined and configured which notification resides on which level. Configuration might
become quite complex, when notification levels changes between software versions.

Within a notification level more fine-grained priority order might be required. This needs
additional configuring in the system and may require new field in the notification message.

Deducting notification states becomes more complex as in some notification levels all states
are not necessarily used.

? ? ?

In forest harvester the machine operator activates the tree cutting by pressing a button in the
hand panel. Once the machine has finished cutting the tree, the harverster head updates its
status variable in VARIABLE MANAGERinforming the notification service that the cutting
operation has finished. Notification service creates a notification which level is notice as this
event does not require any human intervention. The notification message is sent to the bus
and the cabin computer running the user interface receives this message. Once received, the
notification triggers a state change in the system as the system is now ready for the next opera-
tion. Additionally, the cabin computer lights up a led in the dashboard, informing the machine
operator that (s)he can start feeding the log through the delimbing knives. In another case, the
machine operator has left the cabin door open and tries to start to cut a tree. However, once
the operator presses the cut button, the cabin computer generates a warning level notification



13

using the notification service. This notification is delivered via bus to harvester head which
does not start the cutting operation. Cabin computer shows a warning to the user, that the
cabin door is open and it should be closed for safety reasons before the cutting operation can
commence. If the user closes the warning pop up and tries again to start the cutting opera-
tion, the warning is shown again. When the door is closed, the status is updated to normal
and again a notification is generated using the notification service. Now, once the harvester
head has received this notification, it changes its mode and can start to cut the tree. In third
case, the machine operator has started the sawing process of a log and the saw chain breaks.
Harverster head generates a fault notification and sends it to the bus. All nodes go to SAFE
STATE which means they stop the current operation. A fault is shown in the user interface in
the cabin to the machine operator. Now machine operator need to take the necessary actions
to change the saw chain. Once she has done that, she must restart the system to disable the
fault notification. At the start-up the machine runs diagnostics that determine if the saw is OK
and as it notices that the saw is OK, it resets the notification state to "normal".



14

3.3 Notification logging

... you have distributed CONTROL SYSTEM where noteworthy or suspicious events are com-
municated using NOTIFICATIONS. There is a notification service implemented to handle no-
tifications. The fast-paced real-time environment makes it hard to detect the source of a fault
or error while the machine is operating. Therefore, machine operator or maintenance person
needs to search for the faulty component afterwards once the machine is stopped. Further-
more, the machine manufacturer would like to gather information of typical faults for their
own analysis so that the same faults typical to the model can be avoided in the next version.
In addition, it would be beneficial during the yearly maintenance of the machine to find out
what kind of faults and errors have occurred in the system.

How to find out later on what notifications have occured in the system?

In many cases, when a fault or error occurs, it can not be deducted at the moment what was
the root cause of the fault as the environment is real time. It might seem that a controller is
faulty, but it might be caused by another controller or broken sensor. That’s why it should be
possible to find out later on what exactly has happened in the system.

The order of occurred events is important. It should be possible to know reliably the order of
the events.

Sometimes it is necessary to know the exact time when an event has occurred.

Once a fault has occurred, it should be easy and fast for maintenance person to find out the
root cause of the problem.

Diagnostics during the yearly maintenance of the machine should be able to tell what kind of
errors have happened in the system. There should be a way to produce a report of the events
that have occurred in the system.

It is valuable for research and development to know the typical faults and errors that are
taking place in the system. In this way, the next version of the system can be developed so
that these typical faults can be avoided.

Therefore:

Create a logging mechanism that logs selected notifications that occurs in the system.
Add timestamps and notification source to all logged notifications. In this way, order of
notifications can be deducted.

Logging mechanism should be implemented within the notification service. When a notifica-
tion is triggered, it is also logged. A log entry should contain the notification ID, notification



15

data and timestamp. Log entries should be written into a file at some point of time. However,
if log entries are written to a file as they emerge, it may decrease system performance. There-
fore, it is advisable to keep log entries in memory and write them to a file periodically. One
should also take into account the case of a sudden power failure. In that case, the log entries
in memory might get lost. So it is a trade-off between reliability and traceability. Saving in-
terval could be determined using the criticality of the availability of log entries. Most critical
information should probably be written directly to a log file.

Using timestamps for the log entries can be troublesome. It might be the case that the nodes in
the system do not share common time. If this is the case, the order of different notifications on
separate nodes, might be impossible. In that case one might consider using VECTOR CLOCK
FOR MESSAGES or GLOBAL TIME to solve this issue. If real-time is used to determine the
order of log entries, the timestamp should use accuracy of 1 ms.

One question is that should the logging be centralized or distributed. Typically, the logging
is implemented in distributed fashion as notification service is. This prevents the logging
service from producing extra load on the bus. This approach is illustrated in Fig. 5. Often
diagnostics tools and analysis requires that all events are gathered to a single place. This is
typically carried out so that when a diagnostic service is started, it gathers all logs from nodes
and merges them to a single log or handles separate logs as they would be just one log file.
This is a good option as diagnostics are usually run when the machine is not operating and
therefore the bus load is not high. If multiple log files are merged, the original logs should be
left intact and the merged log file should contain the origin of the log entry.

Fig. 5. Typical structure of the notification logging service.

Over time log files can become rather large and it might take a lot of disk space to store them.
That’s why they should be cleared once in a while. For example, log files can be cleared once
the system is updated or during the yearly maintenance. It pretty much depends on the case
when this can be done. Sometimes it might be reasonable to clear log files during the reboot.



16

If necessary, one might consider also filtering notifications that are logged. It might be the
case that all notifications are not relevant from the logging point of view. If NOTIFICATION
LEVELS are used, it can be easy to determine which levels should be logged and which not. If
notifications also have priorities attached to them, this information can be utilized in the log
filtering. It might also be a good idea to have own log file for each notification level.

? ? ?

Notifications taking place in the system can be recorded in the log files for later examination.
This makes it possible to create diagnostic reports later on.

The order of notifications occurred can be determined later on by gathering all log files. This
makes locating the fault easier for the maintenance persons.

May decrease system performance as a log entry has to be created for each notification sent.

May increase memory consumption of a node if multiple log entries are kept in memory
before writing them to a file.

It might be impossible to implement logging service in low end nodes.

? ? ?

In mining drill notification logging is used in each node. Intelligent drill rotation sensor no-
tices that the drill is stuck and sends a notification to the drill controller. This notification is
logged to the sensor node. The drill controller stops the drill and sends a notification forward
that a fault has occurred. The system is stopped. Now the operator accesses the system di-
agnostics to see if the system is malfunctioning or if the drill is really stuck in the drilling
hole. The diagnostics application gathers log files from all nodes and constitutes a report.
From the report the operator can see that the sensor has sent a notification before the drill
controller. This indicates that the system is working correctly, because it could be the case
that the drilling controller is malfunctioning and would send errorenous notifications.



17

4 Acknowledgements

I want to thank my colleagues Ville Reijonen, Marko Leppänen and Johannes Koskinen for
their help. Especially I want to thank all industrial partners who have made it possible to
mine this patterns from their systems: Metso Automation, Kone, Sandvik Mining and Con-
struction, John Deere, Areva T&D. Thanks also to VikingPLoP 2012 participants for the
valuable feedback.


