
Self-configurator

Pietu Pohjalainen

Department of Computer Science
University of Helsinki, Finland

Pietu.Pohjalainen@cs.helsinki.fi

Abstract. Traditional object-oriented design patterns often focus to improve
flexibility of software. A usual pattern in traditional design patterns is to
introduce a new layer of dynamic abstraction that gives an opportunity to
parameterize behavior at runtime. A trade-off for this flexibility is often
increased complexity and reduced performance. We present a pattern, the self-
configurator, for resolving symptoms of unnecessary indirections introduced by
many standard object-oriented patterns.

Keywords: Software maintenance, automated software engineering, self-
configuration.

Intent

A famous quote states, “All problems in computer science can be
solved by another level of indirection”. This statement is a common
driver for many traditional object-oriented design patterns. The less
often cited continuing to the phrase states: “but that usually will create
another problem” [1]. The self-configurator pattern’s intent is to
document and automatize the rules for resolving internal dependencies
that are introduced by the use of other patterns.

Motivation

Software is full of hidden dependencies, where a seemingly innocent
change can cause malfunction or crashing. Programmers have learned
to defend themselves and their colleagues and customers from
excessive rework by designing their software in a way that is resilient
to future changes. As an illustrating example, we will use a dynamic
data structure for implementing a simple processor for the Command
design pattern [2].

Let’s consider the code in Figure 1. It first registers three objects for
handling different commands, and then repeatedly reads in a command
and dispatches following arguments to the given command.

class CommandProcessor {
 static Map<String, Cmd> funcs =
 new HashMap<String, Cmd>() {{
 put(“print”, new PrintCmd());
 put(“noop“, new NoopCmd());
 put(“quit”, new QuitCmd());
 }};

 private static Scanner scanner =
 new Scanner(System.in);

 public static void main(String a[]) {
 while(true) {
 String cmd = scanner.next(“\\w+”);
 String args = scanner.nextLine();
 funcs.get(cmd).Execute(args);
 }
 }
}

Figure 1: Code for a command line processor
For our discussion, the interesting property in this code lies in how

the processor uses a dynamic data structure as the storage for the
registered commands. Using a dynamic structure makes it easy to add
new commands at later time. In contrast to implementing the same
functionality by using e.g. a switch-case construct and hard coding the
possible commands into the structure of the command processor, this
dynamic solution makes the program easier to modify.

This flexibility is gained with the minor runtime cost of using a
dynamically allocated data structure with every command fetching
being routed through the object’s hashing function. Although the
runtime cost is small, it still adds some memory and runtime overhead,
since the generic hashing implementation cannot be optimized for this
specific use case. For example, the standard Java implementation for
HashMap allocates the default value of 16 entries for the map
implementation. In this case, only three of the entries are used, as

shown Table 1. Also, when fetching the command object for a given
command, a generic hashing function is used, which also gives room
for optimization.

 With this discussion, we can see

characteristics of accidental
maintainability in our example. With
accidental maintainability we mean
that in this case the solution uses a
dynamic data structure for handling a
case that does not require a dynamic
solution. Namely, the set of available
commands is a property that is bound
at design time, but a structure that
allows runtime binding is used. There
are a number of reasons for
implementing the command processor
in this way. The map implementation
is available in the standard class
library, its use is well known and
understood among programmers and
for many cases, and the induced
overhead is negligible. Yet another
reason can be the lack of viable

alternatives in current pattern knowledge. In cases where any overhead
should be minimized, introducing this dynamic structure purely due to
implementer’s comfort would not be good use of scarce resources.

Solution

An alternative solution for this example is to create a specific
implementation of the map interface that is statically populated to
contain all the required elements. This would make it possible to use
context-specific knowledge of the structure in implementing the
command fetching system: instead of using a fully generic hashing
table, more memory and runtime efficient, specific hash table and
hashing functions for these three commands could be implemented.

0 null
1 null
2 null
3 null
4 null
5 null
6 NoopOb
7 null
8 null
9 null
10 null
11 null
12 null
13 QuitOb
14 PrintOb
15 null
Table 1:
HashMap default layout

The self-configurator pattern resolves this problem by introducing a
configurator component to this structure. It is a pattern for
implementing self-organizational components.

Figure 2: Self-configuring function for the command processor

Figure 2 illustrates the configuration process. The self-configuring

component reads the static list of commands and generates a specific
hashing function for this set of commands to be used. Now the runtime
and memory overhead of generic hashing is avoided. The hash
generation function is bound (i.e. executed) at the same time as all
other parts are compiled. This way, the runtime overhead can be
minimized. However, the design-time allocation of command names
and associated functions still enjoys the flexibility of defining the
command mapping as a well-understood, standard Map interface.

There is a degree of freedom in placing this generative part in the
binding time continuum. The hash generating function and associated
hash map generation can happen as part of the normal compilation
process, or it can be delayed up until first use of the command
processor object. As usual, earlier binding time gives opportunities for
optimizing for that special case, while delaying binding gives more
flexibility and possibilities to use contextual information to determine
behavior.

Applicability

There are many situations when you can apply this pattern. First of all,
the pattern is applicable when you are using dynamic structures to
guard against changes that a future developer might be performing. In
the example in the previous section, the dynamic mapping structure
gives defines a clear place for implementing additional commands.

}

Map<String, Command> = {

 "print" −> print Ob;

 "noop" −> no operation Ob;

 "quit" −> quit Ob;

}

generate

hash

function

Map<String, Command> = {

switch(ob.hashCode()) {

 case 0x33AF62: noopOb;

 case 0x65FB2AD: printOb;

 case 0x35224F: quitOb;

However, this flexibility is gained by introducing additional runtime
cost.

Another scenario where you can find this pattern useful is if you
need to provide characteristics of one code site to parameterize another
routine. An example of this case can be e.g. a dependency between a
set of different algorithms performing a computation upon data that is
held in the database. Each algorithm requests certain set of data, but
you want to separate the database fetching code from the algorithm’s
processing code. In this case, you can introduce a self-configuring
component to analyze each specific algorithm and to automatically
produce optimized queries for each algorithm without introducing a
dependency between the query site and the algorithm.

Optionally, the pattern can also expose details of the processed
dependency via a dependency interface, which allows programmatic
access to characteristics of this dependency. In the previous section’s
example, this kind of dependency lies between the statically allocated
list of commands and the command-line processing loop.

Structure

Client

method()
 put("noop", new NoopOb());

}

Source site

Analyzer

analyzable code {

 put("print", new PrintOb());

Analyzer(Site)

Analyze()

foreach("put") in Site do

 updateMinimalMap(put.str);

calculateMinimalMap();

return minimalMap;

Participants

In general, the pattern deals about computationally resolvable
dependencies between code artifacts. The resolver component for
configuring the dependencies can be implemented in various ways,
depending on the contextual needs. Typical variations for the resolving
process can be e.g.:

- Compilation time configuration
- Instantiation time configuration
- Runtime configuration
Usually, the later this configuration is done, the more information is

available for the configurator. However, earlier resolving usually offers
opportunities for better performance and more options for further
optimization.

The participants can collaborate in runtime configuration as follows:
Client instantiates the analyzer, with a parameter that defines the

source site to be analyzed
Analyzer reads in the source site definition, and resolves the wanted

properties of the source.

Collaboration

The results of the self-configuration can be characterized as intrinsic
or extrinsic. In intrinsic mode, the pattern implementation represents a
substitute for the analyzed dependency site; e.g. the implementation for
the command processor would represent itself as a map from Strings to
Commands.

In extrinsic mode the self-configurator analyzes a dependency site
and drives another object’s configuration based on the results.

Implementation

In order to analyze a code site for configuring its dependents, there
needs to be a way to access the source data. When using compilation-
time configuration, all the source code is available for analysis. For
instantiation time and runtime configurations the analysis interface is

defined by the execution environment characteristics: some
environments, such as the LISP language expose the full structure of
the program for further analysis; but many current environments do not.
Popular alternatives range from byte-code analysis, such as the BCEL
library [3] in the Java environment, to standardized API access to
program definition, as implemented in .NET’s Expression trees,
available in C# since its third version [4].

Regardless of the used access method, the configurator component
analyzes the dependent’s source. Based on this analysis, the dependent
is configured to adhere to the form that is required by the source site. In
the previous section’s example, a possible configuration could be a
generation of a minimal perfect hashing table for the different
registered commands.

Often the required target configuration varies from one context to
another. What is common in different variations is the built-in ability
for the architecture to adapt to changes between architectural elements,
which help both in maintenance and in gaining understanding of the
overall system.

Known uses

To illustrate the idea of self-configuring software components, we
present example cases from our previous work and from the industry.

a) Interpreters and compilers
Tim Barners-Lee is quoted of saying: “Any good software engineer will
tell you that a compiler and an interpreter are interchangeable”. The
idea behind this quote is that since the interpreter executes code in the
interpreted language, it necessarily has the required knowledge for
producing the equivalent lower level code. Also the other way applies:
the compilation routines for a given language can also be harnessed to
build an equivalent interpreter.
This interchanging process can be seen as the self-configuration
component. This has been applied e.g. to build compilers for embedded
domain-specific languages [5] and to produce portable execution
environments for legacy binaries [6].
The self-configurator in this case can build a compiler from an
interpreter by analyzing each opcode definition of the interpreter and

by emitting each opcode’s corresponding code as the code generation
step.

b) Self-configuring database queries

Many useful information systems can be characterized as typical
database applications: they read data from a database to the main
memory, perform an algorithm on the data, and then write the result
back into the database.

These types of applications have a dependency between the data that
is read from the database, and the algorithm performing the
calculations. Within the object-oriented style of programming, an
additional object layer is built on top of a typical relational database,
creating an additional problem of object/relational mismatch. An
approach of building object-to-relational mapping frameworks, such as
Hibernate [7] proved to be popular as a bridge between object-oriented
application code and relational persistence structures. In order to
provide a fluent programming experience for the object-oriented
design, transparent persistence is one of the key phrases. The promise
of transparent persistence means that objects can be programmed as
objects, without thinking the underlying relational database.

One of the tools for achieving transparent persistence is the usage of
the proxy design pattern [2] to hide if an object’s internal state is stored
in the database, or whether it is already loaded to the main memory.

However, in many cases this delayed fetching hides symptoms of bad
design: the program relies on the slow, runtime safety net implemented
with the proxy. A better design would be to explicitly define, which
object should be fetched. If the objects to be processed within certain
algorithm can be known beforehand, the usage of the proxy pattern can
be classified as a design fault.

We have documented the usage of the self-configurational database
queries as a tool to improve runtime properties of this case at [8]. In
this design, a code analyzer reads in the byte-code of given algorithm
and deducts the required queries for prefetching the needed data from
the database. This design helps maintenance properties: should the
algorithm change for some reason, the fetching code is automatically
updated to reflect the change. Another benefit is that on architectural
level, the number of database-accessing components is reduced, since
this one component can configure itself for multiple cases.

c) Self-configuring user interface components
Component-based software engineering is widely employed in the area
of user interface composition. User interface widgets can be developed
as stand-alone components, and a new application’s interface can be
built by composing from a palette of these ready-made components.
Pioneered in Visual Basic, the approach has been adapted to numerous
architectures.

One of the drawbacks in component-based user interface composing
is the need for duplicated binding expressions when programmatically
defining multiple properties of user interface components. For example,
when defining whether a user interface component is active or not, a
corresponding tooltip should be placed. Without sufficient support for
cross-referencing to other binding expressions, providing this kind of
conceptual coherence in the user interface requires cloning of the
behavior defining expressions.

We built a prototype for analyzing these binding expressions in the
standard Java environment for building web interfaces, the Java Server
Faces [9]. By exposing the structure of the binding expressions to
backend code, we were able to reduce the amount of cloned binding
expressions by a factor of 3 in a demo application [10].

d) Generating languages for domain-specific queries
The previous examples work in the expression-level abstraction. The
approach of self-configuring components can be scaled to component-
level. For example, the QueryDSL framework [11] generates internal
domain-specific languages in the spirit of fluent interfaces and interface
chaining.

For the problem of querying data in a domain model, the QueryDSL
framework generates a class structure that reflects the domain model,
augmented with a set of querying functions. These querying functions
can be used to formulate aggregation, filtering and sorting queries in
the standard Java environment. The generative nature of the framework
is exploited to build type-safe queries, which is in contrast to the
previous model of using generic objects to bring the domain model
concepts to the program’s structure.

The difference between the QueryDSL approach and the previous
examples is the applicability scale. While the previous example work
on intra-component level, there is no reason why the approach could
not be scaled to component and systems level.

Related patterns

Many traditional object-oriented design patterns can be analyzed and
optimized via this pattern.

The self-configurator pattern can be seen as a formalized variation
of maintenance patterns [12]. In maintenance patterns, the idea is to
document the required tasks to perform feature adding maintenance
tasks. In the self-configurator pattern, these tasks are documented in
executable code (reconfiguration rules), so that the software can adapt
itself to the new situation.

The pattern uses the idea of introspection and reflection from the
CLOS meta-object protocol [13] to build the maintenance instructions.

References

1. Diomidis Spinellis. Another level of indirection. In Andy Oram and Greg Wilson, editors,
Beautiful Code: Leading Programmers Explain How They Think, chapter 17, pages 279–
291. O'Reilly and Associates, Sebastopol, CA, 2007.

2. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

3. Markus Dahm, Byte Code Engineering with the BCEL API. Technical Report B-17-98.
Freie Universität Berlin, 2001.

4. C# Language Specification, version 3.0. Microsoft Corporation, 2007.
5. Conal Elliott, Sigbjørn Finne and Oege De Moor, Compiling Embedded Languages.

Journal of Functional Programming, Volume 13 Issue 3, May 2003
6. Alexander Yermolovich, Andreas Gal and Michael Franz. Portable execution of legacy

binaries on the Java virtual machine, PPPJ ’08: Proceedings of the 6th International
Symposium on Principles and Practice of Programming in Java, ACM: New York, NY,
2008; pp. 63-72.

7. Christian Bauer and Gavin King. Hibernate in Action. Manning Publications, 2004.
8. Pietu Pohjalainen and Juha Taina. Self-configuring object-to-relational mapping queries,

PPPJ ’08: Proceedings of the 6th International Symposium on Principles and Practice of
Programming in Java, ACM: New York, NY, 2008; pp. 53–59.

9. JSR 252: JavaServer Faces 1.2. Technical report, Sun Microsystems, 2006.
10. Pietu Pohjalainen. Self-configuring user interface components. In A. Dix, T. Hussein, S.

Lukosch, J. Ziegler (Eds.), Proceedings of the First Workshop on Semantic Models for
Adaptive Interactive Systems, 2010.

11. Timo Westkämper, Samppa Saarela, Vesa Marttila and Lassi Immonen. QueryDSL
reference documentation [online].

12. Imed Hammouda and Maarit Harsu. Documenting Maintenance Tasks Using
Maintenance Patterns. In proceedings of CSMR 2004, IEEE Computer Society, pp. 37-
47, 2004.

13. Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow, The Art of the Metaobject
Protocol. MIT Press, 1991.

