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Abstract. Traditional object-oriented design patterns often focus to improve 
flexibility of software. A usual pattern in traditional design patterns is to 
introduce a new layer of dynamic abstraction that gives an opportunity to 
parameterize behavior at runtime. A trade-off for this flexibility is often 
increased complexity and reduced performance. We present a pattern, the self-
configurator, for resolving symptoms of unnecessary indirections introduced by 
many standard object-oriented patterns.  
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Intent 

A famous quote states, “All problems in computer science can be 
solved by another level of indirection”. This statement is a common 
driver for many traditional object-oriented design patterns. The less 
often cited continuing to the phrase states: “but that usually will create 
another problem” [1]. The self-configurator pattern’s intent is to 
document and automatize the rules for resolving internal dependencies 
that are introduced by the use of other patterns.  

Motivation 

Software is full of hidden dependencies, where a seemingly innocent 
change can cause malfunction or crashing. Programmers have learned 
to defend themselves and their colleagues and customers from 
excessive rework by designing their software in a way that is resilient 
to future changes. As an illustrating example, we will use a dynamic 
data structure for implementing a simple processor for the Command 
design pattern [2].  



Let’s consider the code in Figure 1. It first registers three objects for 
handling different commands, and then repeatedly reads in a command 
and dispatches following arguments to the given command.  
 
class CommandProcessor { 
    static Map<String, Cmd> funcs =  
        new HashMap<String, Cmd>() {{ 
            put(“print”, new PrintCmd()); 
            put(“noop“,  new NoopCmd()); 
            put(“quit”,  new QuitCmd()); 
        }}; 
 
   private static Scanner scanner =  
           new Scanner(System.in); 
 
   public static void main(String a[]) { 
        while(true) { 
            String cmd = scanner.next(“\\w+”); 
            String args = scanner.nextLine(); 
            funcs.get(cmd).Execute(args); 
        } 
    } 
} 

Figure 1: Code for a command line processor 
For our discussion, the interesting property in this code lies in how 

the processor uses a dynamic data structure as the storage for the 
registered commands. Using a dynamic structure makes it easy to add 
new commands at later time. In contrast to implementing the same 
functionality by using e.g. a switch-case construct and hard coding the 
possible commands into the structure of the command processor, this 
dynamic solution makes the program easier to modify.  

This flexibility is gained with the minor runtime cost of using a 
dynamically allocated data structure with every command fetching 
being routed through the object’s hashing function. Although the 
runtime cost is small, it still adds some memory and runtime overhead, 
since the generic hashing implementation cannot be optimized for this 
specific use case. For example, the standard Java implementation for 
HashMap allocates the default value of 16 entries for the map 
implementation. In this case, only three of the entries are used, as 



shown Table 1. Also, when fetching the command object for a given 
command, a generic hashing function is used, which also gives room 
for optimization. 

 
 With this discussion, we can see 

characteristics of accidental 
maintainability in our example. With 
accidental maintainability we mean 
that in this case the solution uses a 
dynamic data structure for handling a 
case that does not require a dynamic 
solution. Namely, the set of available 
commands is a property that is bound 
at design time, but a structure that 
allows runtime binding is used. There 
are a number of reasons for 
implementing the command processor 
in this way. The map implementation 
is available in the standard class 
library, its use is well known and 
understood among programmers and 
for many cases, and the induced 
overhead is negligible. Yet another 
reason can be the lack of viable 

alternatives in current pattern knowledge. In cases where any overhead 
should be minimized, introducing this dynamic structure purely due to 
implementer’s comfort would not be good use of scarce resources.  

Solution 

An alternative solution for this example is to create a specific 
implementation of the map interface that is statically populated to 
contain all the required elements. This would make it possible to use 
context-specific knowledge of the structure in implementing the 
command fetching system: instead of using a fully generic hashing 
table, more memory and runtime efficient, specific hash table and 
hashing functions for these three commands could be implemented.  

 

0 null 
1 null 
2 null 
3 null 
4 null 
5 null 
6 NoopOb 
7 null 
8 null 
9 null 
10 null 
11 null 
12 null 
13 QuitOb 
14 PrintOb 
15 null 
Table 1:  
HashMap default layout 



The self-configurator pattern resolves this problem by introducing a 
configurator component to this structure. It is a pattern for 
implementing self-organizational components.  

 
 

 
Figure 2: Self-configuring function for the command processor 
 
Figure 2 illustrates the configuration process. The self-configuring 

component reads the static list of commands and generates a specific 
hashing function for this set of commands to be used. Now the runtime 
and memory overhead of generic hashing is avoided. The hash 
generation function is bound (i.e. executed) at the same time as all 
other parts are compiled. This way, the runtime overhead can be 
minimized. However, the design-time allocation of command names 
and associated functions still enjoys the flexibility of defining the 
command mapping as a well-understood, standard Map interface. 

There is a degree of freedom in placing this generative part in the 
binding time continuum. The hash generating function and associated 
hash map generation can happen as part of the normal compilation 
process, or it can be delayed up until first use of the command 
processor object. As usual, earlier binding time gives opportunities for 
optimizing for that special case, while delaying binding gives more 
flexibility and possibilities to use contextual information to determine 
behavior. 

Applicability 

There are many situations when you can apply this pattern. First of all, 
the pattern is applicable when you are using dynamic structures to 
guard against changes that a future developer might be performing. In 
the example in the previous section, the dynamic mapping structure 
gives defines a clear place for implementing additional commands. 

}

Map<String, Command> = {

   "print" −> print Ob;

    "noop" −> no operation Ob;

    "quit" −> quit Ob;

}

generate 

hash

function

Map<String, Command> = {

switch(ob.hashCode()) {

  case 0x33AF62: noopOb;

  case 0x65FB2AD: printOb;

  case 0x35224F: quitOb;



However, this flexibility is gained by introducing additional runtime 
cost.  

Another scenario where you can find this pattern useful is if you 
need to provide characteristics of one code site to parameterize another 
routine. An example of this case can be e.g. a dependency between a 
set of different algorithms performing a computation upon data that is 
held in the database. Each algorithm requests certain set of data, but 
you want to separate the database fetching code from the algorithm’s 
processing code. In this case, you can introduce a self-configuring 
component to analyze each specific algorithm and to automatically 
produce optimized queries for each algorithm without introducing a 
dependency between the query site and the algorithm. 

Optionally, the pattern can also expose details of the processed 
dependency via a dependency interface, which allows programmatic 
access to characteristics of this dependency. In the previous section’s 
example, this kind of dependency lies between the statically allocated 
list of commands and the command-line processing loop.  

 

Structure 

 

Client

method()
    put("noop", new NoopOb());

}

Source site

Analyzer

analyzable code {

    put("print", new PrintOb());

Analyzer(Site)

Analyze()

foreach("put") in Site do

   updateMinimalMap(put.str);

calculateMinimalMap();

return minimalMap;



Participants  

In general, the pattern deals about computationally resolvable 
dependencies between code artifacts. The resolver component for 
configuring the dependencies can be implemented in various ways, 
depending on the contextual needs. Typical variations for the resolving 
process can be e.g.: 

- Compilation time configuration 
- Instantiation time configuration 
- Runtime configuration 
Usually, the later this configuration is done, the more information is 

available for the configurator. However, earlier resolving usually offers 
opportunities for better performance and more options for further 
optimization.  

 
The participants can collaborate in runtime configuration as follows: 
Client instantiates the analyzer, with a parameter that defines the 

source site to be analyzed 
Analyzer reads in the source site definition, and resolves the wanted 

properties of the source. 

Collaboration  

The results of the self-configuration can be characterized as intrinsic 
or extrinsic. In intrinsic mode, the pattern implementation represents a 
substitute for the analyzed dependency site; e.g. the implementation for 
the command processor would represent itself as a map from Strings to 
Commands. 

In extrinsic mode the self-configurator analyzes a dependency site 
and drives another object’s configuration based on the results.  

Implementation 

In order to analyze a code site for configuring its dependents, there 
needs to be a way to access the source data. When using compilation-
time configuration, all the source code is available for analysis. For 
instantiation time and runtime configurations the analysis interface is 



defined by the execution environment characteristics: some 
environments, such as the LISP language expose the full structure of 
the program for further analysis; but many current environments do not. 
Popular alternatives range from byte-code analysis, such as the BCEL 
library [3] in the Java environment, to standardized API access to 
program definition, as implemented in .NET’s Expression trees, 
available in C# since its third version [4].  

Regardless of the used access method, the configurator component 
analyzes the dependent’s source. Based on this analysis, the dependent 
is configured to adhere to the form that is required by the source site. In 
the previous section’s example, a possible configuration could be a 
generation of a minimal perfect hashing table for the different 
registered commands. 

Often the required target configuration varies from one context to 
another. What is common in different variations is the built-in ability 
for the architecture to adapt to changes between architectural elements, 
which help both in maintenance and in gaining understanding of the 
overall system. 

Known uses 

To illustrate the idea of self-configuring software components, we 
present example cases from our previous work and from the industry. 

 
a) Interpreters and compilers 
Tim Barners-Lee is quoted of saying: “Any good software engineer will 
tell you that a compiler and an interpreter are interchangeable”.  The 
idea behind this quote is that since the interpreter executes code in the 
interpreted language, it necessarily has the required knowledge for 
producing the equivalent lower level code. Also the other way applies: 
the compilation routines for a given language can also be harnessed to 
build an equivalent interpreter.  
This interchanging process can be seen as the self-configuration 
component. This has been applied e.g. to build compilers for embedded 
domain-specific languages [5] and to produce portable execution 
environments for legacy binaries [6]. 
The self-configurator in this case can build a compiler from an 
interpreter by analyzing each opcode definition of the interpreter and 



by emitting each opcode’s corresponding code as the code generation 
step. 

 
b) Self-configuring database queries 

Many useful information systems can be characterized as typical 
database applications: they read data from a database to the main 
memory, perform an algorithm on the data, and then write the result 
back into the database.  

These types of applications have a dependency between the data that 
is read from the database, and the algorithm performing the 
calculations. Within the object-oriented style of programming, an 
additional object layer is built on top of a typical relational database, 
creating an additional problem of object/relational mismatch. An 
approach of building object-to-relational mapping frameworks, such as 
Hibernate [7] proved to be popular as a bridge between object-oriented 
application code and relational persistence structures. In order to 
provide a fluent programming experience for the object-oriented 
design, transparent persistence is one of the key phrases. The promise 
of transparent persistence means that objects can be programmed as 
objects, without thinking the underlying relational database. 

One of the tools for achieving transparent persistence is the usage of 
the proxy design pattern [2] to hide if an object’s internal state is stored 
in the database, or whether it is already loaded to the main memory.  

However, in many cases this delayed fetching hides symptoms of bad 
design: the program relies on the slow, runtime safety net implemented 
with the proxy. A better design would be to explicitly define, which 
object should be fetched. If the objects to be processed within certain 
algorithm can be known beforehand, the usage of the proxy pattern can 
be classified as a design fault. 

We have documented the usage of the self-configurational database 
queries as a tool to improve runtime properties of this case at [8]. In 
this design, a code analyzer reads in the byte-code of given algorithm 
and deducts the required queries for prefetching the needed data from 
the database. This design helps maintenance properties: should the 
algorithm change for some reason, the fetching code is automatically 
updated to reflect the change. Another benefit is that on architectural 
level, the number of database-accessing components is reduced, since 
this one component can configure itself for multiple cases. 
 



c) Self-configuring user interface components 
Component-based software engineering is widely employed in the area 
of user interface composition. User interface widgets can be developed 
as stand-alone components, and a new application’s interface can be 
built by composing from a palette of these ready-made components. 
Pioneered in Visual Basic, the approach has been adapted to numerous 
architectures. 

One of the drawbacks in component-based user interface composing 
is the need for duplicated binding expressions when programmatically 
defining multiple properties of user interface components. For example, 
when defining whether a user interface component is active or not, a 
corresponding tooltip should be placed. Without sufficient support for 
cross-referencing to other binding expressions, providing this kind of 
conceptual coherence in the user interface requires cloning of the 
behavior defining expressions. 

We built a prototype for analyzing these binding expressions in the 
standard Java environment for building web interfaces, the Java Server 
Faces [9]. By exposing the structure of the binding expressions to 
backend code, we were able to reduce the amount of cloned binding 
expressions by a factor of 3 in a demo application [10].  

 
d) Generating languages for domain-specific queries 
The previous examples work in the expression-level abstraction. The 
approach of self-configuring components can be scaled to component-
level. For example, the QueryDSL framework [11] generates internal 
domain-specific languages in the spirit of fluent interfaces and interface 
chaining.  

For the problem of querying data in a domain model, the QueryDSL 
framework generates a class structure that reflects the domain model, 
augmented with a set of querying functions. These querying functions 
can be used to formulate aggregation, filtering and sorting queries in 
the standard Java environment. The generative nature of the framework 
is exploited to build type-safe queries, which is in contrast to the 
previous model of using generic objects to bring the domain model 
concepts to the program’s structure.  

The difference between the QueryDSL approach and the previous 
examples is the applicability scale. While the previous example work 
on intra-component level, there is no reason why the approach could 
not be scaled to component and systems level. 



Related patterns 

Many traditional object-oriented design patterns can be analyzed and 
optimized via this pattern.  

The self-configurator pattern can be seen as a formalized variation 
of maintenance patterns [12]. In maintenance patterns, the idea is to 
document the required tasks to perform feature adding maintenance 
tasks. In the self-configurator pattern, these tasks are documented in 
executable code (reconfiguration rules), so that the software can adapt 
itself to the new situation.  

The pattern uses the idea of introspection and reflection from the 
CLOS meta-object protocol [13] to build the maintenance instructions.  
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